Thomas Brendan Murphy


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Adapting Psycholinguistic Research for LLMs: Gender-inclusive Language in a Coreference Context
Marion Bartl | Thomas Brendan Murphy | Susan Leavy
Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Gender-inclusive language is often used with the aim of ensuring that all individuals, regardless of gender, can be associated with certain concepts. While psycholinguistic studies have examined its effects in relation to human cognition, it remains unclear how Large Language Models (LLMs) process gender-inclusive language. Given that commercial LLMs are gaining an increasingly strong foothold in everyday applications, it is crucial to examine whether LLMs in fact interpret gender-inclusive language neutrally, because the language they generate has the potential to influence the language of their users. This study examines whether LLM-generated coreferent terms align with a given gender expression or reflect model biases. Adapting psycholinguistic methods from French to English and German, we find that in English, LLMs generally maintain the antecedent’s gender but exhibit underlying masculine bias. In German, this bias is much stronger, overriding all tested gender-neutralization strategies.