Thiyam Susma Devi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Analysis of Manipuri Tones in ManiTo: A Tonal Contrast Database
Thiyam Susma Devi | Pradip K. Das
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

Manipuri is a low-resource, tonal language spoken predominantly in Manipur, a northeastern state of India. It has two tones - level and falling tones. For an acceptable Automatic Speech Recognition (ASR) system, integration of tonal information from a robust Tone Recognition model is essential. Research work on ASR has been done on Asian, African and Indo-European tonal languages such as Mandarin, Thai, Vietnamese and Chinese but Manipuri is largely unexplored. This paper focuses on the fundamental analysis of the developed hand-crafted tonal contrast dataset, ManiTo. It is observed that the height and slope of the pitch contour can be used to distinguish the two tones of the Manipuri language.