Thibault Ehrhart


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
D2KLab at SemEval-2023 Task 2: Leveraging T-NER to Develop a Fine-Tuned Multilingual Model for Complex Named Entity Recognition
Thibault Ehrhart | Julien Plu | Raphael Troncy
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper presents D2KLab’s system used for the shared task of “Multilingual Complex Named Entity Recognition (MultiCoNER II)”, as part of SemEval 2023 Task 2. The system relies on a fine-tuned transformer based language model for extracting named entities. In addition to the architecture of the system, we discuss our results and observations.