Theodora Kyriakou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DUTh at SemEval 2024 Task 8: Comparing classic Machine Learning Algorithms and LLM based methods for Multigenerator, Multidomain and Multilingual Machine-Generated Text Detection
Theodora Kyriakou | Ioannis Maslaris | Avi Arampatzis
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Text-generative models evolve rapidly nowadays. Although, they are very useful tools for a lot of people, they have also raised concerns for different reasons. This paper presents our work for SemEval2024 Task-8 on 2 out of the 3 subtasks. This shared task aims at finding automatic models for making AI vs. human written text classification easier. Our team, after trying different preprocessing, several Machine Learning algorithms, and some LLMs, ended up with mBERT, XLM-RoBERTa, and BERT for the tasks we submitted. We present both positive and negative methods, so that future researchers are informed about what works and what doesn’t.