Terrence Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LEAF: Learning and Evaluation Augmented by Fact-Checking to Improve Factualness in Large Language Models
Hieu Tran | Junda Wang | Yujan Ting | Hong Yu | Weijing Huang | Terrence Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large language models (LLMs) often struggle with factual accuracy in knowledge-intensive domains like healthcare. We introduce LEAF (Learning and Evaluation Augmented by Fact-Checking), a framework for improving LLM factuality in medical question answering. LEAF comprises three components: (1) RAFE, a robust fact-checking system using open-source LLMs and domain-specific retrieval to evaluate response accuracy; (2) Fact-Check-then-RAG, which leverages fact-checking results to guide retrieval without parameter updates; and (3) Learning from Fact Check, enabling self-training through supervised fine-tuning or preference-based learning using fact-checking as pseudo-labels. Experimental results show that RAFE outperforms Factcheck-GPT in detecting inaccuracies, Fact-Check-then-RAG effectively corrects errors, and Learning from Fact Check improves performance without labeled data. In a real-world healthcare deployment with proprietary medical documents, LEAF achieved an 83% improvement in factuality scores, demonstrating practical applicability for adapting general-purpose LLMs to organization-specific knowledge. Our framework provides a scalable solution for industrial applications requiring high factual accuracy.

pdf bib
Training Medical QA Models Based on Mixed Rewards from Multiple-Choice and Open-Ended Questions
Yue Qiu | Yujan Ting | Pei Dong | Terrence Chen | Weijing Huang
Findings of the Association for Computational Linguistics: EMNLP 2025

Reinforcement learning (RL) for large language models (LLMs) typically requires clear reward signals, which are often unavailable for open-ended (OE) questions where answer evaluation is ambiguous without scalable expert labeling. We investigate whether LLMs benefit from training on mixed data with varying reward clarity. Our approach combines Multiple-choice questions (MCQs), which offer clear binary rewards, with OE questions, for which we use simpler, potentially noisy rewards such as Jaccard similarity or LLM-based evaluators. We hypothesize that MCQs can stabilize training when mixed with OE questions. Our experiments show this mixed-data approach consistently improves medical question-answering performance across model scales.