Teodora Mihajlov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Automatic Student Answer Assessment using LSA
Teodora Mihajlov
Proceedings of the Workshop on Computational Terminology in NLP and Translation Studies (ConTeNTS) Incorporating the 16th Workshop on Building and Using Comparable Corpora (BUCC)

Implementing technology in a modern-day classroom is an ongoing challenge. In this paper, we created a system for an automatic assessment of student answers using Latent Semantic Analysis (LSA) – a method with an underlying assumption that words with similar meanings will appear in the same contexts. The system will be used within digital lexical flash-cards for L2 vocabulary acquisition in a CLIL classroom. Results presented in this paper indicate that while LSA does well in creating semantic spaces for longer texts, it somewhat struggles with detecting topics in short texts. After obtaining LSA semantic spaces, answer accuracy was assessed by calculating the cosine similarity between a student’s answer and the golden standard. The answers were classified by accuracy using KNN, for both binary and multinomial classification. The results of KNN classification are as follows: precision P = 0.73, recall R = 1.00, F1 = 0.85 for binary classification, and P = 0.50, R = 0.47, F1 = 0.46 score for the multinomial classifier. The results are to be taken with a grain of salt, due to a small test and training dataset.
Search
Co-authors
    Venues
    Fix data