Tengfei Huo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
One Comment from One Perspective: An Effective Strategy for Enhancing Automatic Music Comment
Tengfei Huo | Zhiqiang Liu | Jinchao Zhang | Jie Zhou
Proceedings of the 28th International Conference on Computational Linguistics

The automatic generation of music comments is of great significance for increasing the popularity of music and the music platform’s activity. In human music comments, there exists high distinction and diverse perspectives for the same song. In other words, for a song, different comments stem from different musical perspectives. However, to date, this characteristic has not been considered well in research on automatic comment generation. The existing methods tend to generate common and meaningless comments. In this paper, we propose an effective multi-perspective strategy to enhance the diversity of the generated comments. The experiment results on two music comment datasets show that our proposed model can effectively generate a series of diverse music comments based on different perspectives, which outperforms state-of-the-art baselines by a substantial margin.