Tengbo Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
The NiuTrans Machine Translation Systems for WMT19
Bei Li | Yinqiao Li | Chen Xu | Ye Lin | Jiqiang Liu | Hui Liu | Ziyang Wang | Yuhao Zhang | Nuo Xu | Zeyang Wang | Kai Feng | Hexuan Chen | Tengbo Liu | Yanyang Li | Qiang Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.