Tara Samiksha


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HTMS@DravidianLangTech 2025: Fusing TF-IDF and BERT with Dimensionality Reduction for Abusive Language Detection in Tamil and Malayalam
Bachu Naga Sri Harini | Kankipati Venkata Meghana | Kondakindi Supriya | Tara Samiksha | Premjith B
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Detecting abusive and similarly toxic content posted on a social media platform is challenging due to the complexities of the language, data imbalance, and the code-mixed nature of the text. In this paper, we present our submissions for the shared task on abusive Tamil and Malayalam texts targeting women on social media—DravidianLangTech@NAACL 2025. We propose a hybrid embedding model that integrates embeddings generated using term frequency-inverse document frequency (TF-IDF) and BERT. To get rid of the differences in the embedding dimensions, we used a dimensionality reduction method with TF-IDF embedding. We submitted two more runs to the shared task, which involve a model based on TF-IDF embedding and another based on BERT-based embedding. The code for the submissions is available at https://github.com/Tarrruh/NLP_HTMS.