Tao Zhang

Other people with similar names: Tao Zhang, Tao Zhang, Tao Zhang

Unverified author pages with similar names: Tao Zhang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ECERC: Evidence-Cause Attention Network for Multi-Modal Emotion Recognition in Conversation
Tao Zhang | Zhenhua Tan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-modal Emotion Recognition in Conversation (MMERC) aims to identify speakers’ emotional states using multi-modal conversational data, significant for various domains. MMERC requires addressing emotional causes: contextual factors that influence emotions, alongside emotional evidence directly expressed in the target utterance. Existing methods primarily model general conversational dependencies, such as sequential utterance relationships or inter-speaker dynamics, but fall short in capturing diverse and detailed emotional causes, including emotional contagion, influences from others, and self-referenced or externally introduced events. To address these limitations, we propose the Evidence-Cause Attention Network for Multi-Modal Emotion Recognition in Conversation (ECERC). ECERC integrates emotional evidence with contextual causes through five stages: Evidence Gating extracts and refines emotional evidence across modalities; Cause Encoding captures causes from conversational context; Evidence-Cause Interaction uses attention to integrate evidence with diverse causes, generating rich candidate features for emotion inference; Feature Gating adaptively weights contributions of candidate features; and Emotion Classification classifies emotions. We evaluate ECERC on two widely used benchmark datasets, IEMOCAP and MELD. Experimental results show that ECERC achieves competitive performance in weighted F1-score and accuracy, demonstrating its effectiveness in MMERC