This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
TaoWu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as “helpful assistants”, target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the Student_100 dataset, consisting of 100 students working on Python programming and 5,000 learning records. Experimental results show that our method consistently outperforms baseline models, achieving 100% improvement in simulation accuracy and realism.
With the rise of multi-modal large language models, accurately extracting and understanding textual information from video content—referred to as video-based optical character recognition (Video OCR)—has become a crucial capability. This paper introduces a novel benchmark designed to evaluate the video OCR performance of multi-modal models in videos. Comprising 1,028 videos and 2,961 question-answer pairs, this benchmark proposes several key challenges through 6 distinct sub-tasks: (1) Recognition of text content itself and its basic visual attributes, (2) Semantic and Spatial Comprehension of OCR objects in videos (3) Dynamic Motion detection and Temporal Localization. We developed this benchmark using a semi-automated approach that integrates the OCR ability of image LLMs with manual refinement, balancing efficiency, cost, and data quality. Our resource aims to help advance research in video LLMs and underscores the need for improving OCR ability for video LLMs. The benchmark will be released on https://github.com/YuHuiGao/FG-Bench.git.
Information retrieval in specialized domains (e.g., legal and medical) faces challenges in aligning user queries, often expressed in colloquial language, with highly structured, terminology-rich documents. This discrepancy creates a distribution gap in the text representation. Recent methods aim to enhance queries by generating intermediary elements (e.g., keywords, pseudo-documents) before performing retrieval with large language models (LLMs). However, by treating LLMs and retrievers separately, these approaches risk producing unreliable or irrelevant intermediaries, which can significantly degrade retrieval performance. To address this issue, we propose CoEvo, an alternating optimization framework that facilitates the coevolution of LLMs and retrieval models. CoEvo operates through two key steps: L-step directs the LLM in generating intermediaries by leveraging an archive of historical examples known to enhance retrieval. R-step trains the retriever using contrastive learning on the intermediaries produced by the LLM. Finally, we evaluate and flexibly leverage content generated by the LLM to amplify the effectiveness of coevolution. Experimental results demonstrate significant improvements in retrieval performance across both legal and medical domains.
Large Language Models (LLMs) have demonstrated strong performance in open-ended generation tasks. However, they often struggle to adapt content to users with differing cognitive capacities, leading to a phenomenon we term cognitive misalignment. This issue arises in two forms: knowledge-level misalignment, where content is too complex or too simplistic relative to user understanding, and presentation style misalignment, where the structure or tone hinders effective comprehension. To address these challenges, we propose the Cognitive-Level Alignment Framework (CLAF), a general-purpose generation framework that aligns both knowledge complexity and presentation style with user cognition. CLAF integrates a capability-aware retrieval module based on a hierarchical knowledge graph and a style optimization module guided by Bloom’s taxonomy and preference learning. Additionally, a knowledge-controllable generation component ensures consistency and relevance throughout the output. To support training and evaluation, we construct Scale, a cognitively annotated dataset containing responses at multiple comprehension levels per query. Empirical results show that CLAF enhances the adaptability and informativeness of LLM outputs across a range of user profiles, offering a robust solution to cognitive-level alignment in real-world applications.
Online forms are widely used to collect data from human and have a multi-billion market. Many software products provide online services for creating semi-structured forms where questions and descriptions are organized by predefined structures. However, the design and creation process of forms is still tedious and requires expert knowledge. To assist form designers, in this work we present FormLM to model online forms (by enhancing pre-trained language model with form structural information) and recommend form creation ideas (including question / options recommendations and block type suggestion). For model training and evaluation, we collect the first public online form dataset with 62K online forms. Experiment results show that FormLM significantly outperforms general-purpose language models on all tasks, with an improvement by 4.71 on Question Recommendation and 10.6 on Block Type Suggestion in terms of ROUGE-1 and Macro-F1, respectively.