Tanya Korelsky


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2004

pdf bib
Question answering using ontological semantics
Stephen Beale | Benoit Lavoie | Marjorie McShane | Sergei Nirenburg | Tanya Korelsky
Proceedings of the 2nd Workshop on Text Meaning and Interpretation

2002

pdf bib
Learning Domain-Specific Transfer Rules: An Experiment with Korean to English Translation
Benoit Lavoie | Michael White | Tanya Korelsky
COLING-02: Machine Translation in Asia

2001

pdf bib
Multidocument Summarization via Information Extraction
Michael White | Tanya Korelsky | Claire Cardie | Vincent Ng | David Pierce | Kiri Wagstaff
Proceedings of the First International Conference on Human Language Technology Research

pdf bib
Inducing Lexico-Structural Transfer Rules from Parsed Bi-texts
Benoit Lavoie | Michael White | Tanya Korelsky
Proceedings of the ACL 2001 Workshop on Data-Driven Methods in Machine Translation

2000

pdf bib
Handling structural divergences and recovering dropped arguments in a Korean/English machine translation system
Chung-hye Han | Benoit Lavoie | Martha Palmer | Owen Rambow | Richard Kittredge | Tanya Korelsky | Nari Kim | Myunghee Kim
Proceedings of the Fourth Conference of the Association for Machine Translation in the Americas: Technical Papers

This paper describes an approach for handling structural divergences and recovering dropped arguments in an implemented Korean to English machine translation system. The approach relies on canonical predicate-argument structures (or dependency structures), which provide a suitable pivot representation for the handling of structural divergences and the recovery of dropped arguments. It can also be converted to and from the interface representations of many off-the-shelf parsers and generators.

pdf bib
A Framework for MT and Multilingual NLG Systems Based on Uniform Lexico-Structural Processing
Benoit Lavoie | Richard Kittredge | Tanya Korelsky | Owen Rambow
Sixth Applied Natural Language Processing Conference

1998

pdf bib
A New Approach to Expert System Explanations
Regina Barzilay | Daryl McCullough | Owen Rambow | Jonathan DeCristofaro | Tanya Korelsky | Benoit Lavoie
Natural Language Generation

1993

pdf bib
Towards Stratification of RST
Tanya Korelsky | Richard Kittredge
Intentionality and Structure in Discourse Relations

1992

pdf bib
Applied Text Generation
Owen Rambow | Tanya Korelsky
Third Conference on Applied Natural Language Processing