Tamsin Emily James


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Exploring the Limits of Fine-grained LLM-based Physics Inference via Premise Removal Interventions
Jordan Meadows | Tamsin Emily James | Andre Freitas
Findings of the Association for Computational Linguistics: EMNLP 2024

Language models (LMs) can hallucinate when performing complex mathematical reasoning. Physics provides a rich domain for assessing their mathematical capabilities, where physical context requires that any symbolic manipulation satisfies complex semantics (e.g., units, tensorial order). In this work, we systematically remove crucial context from prompts to force instances where model inference may be algebraically coherent, yet unphysical. We assess LM capabilities in this domain using a curated dataset encompassing multiple notations and Physics subdomains. Further, we improve zero-shot scores using synthetic in-context examples, and demonstrate non-linear degradation of derivation quality with perturbation strength via the progressive omission of supporting premises. We find that the models’ mathematical reasoning is not physics-informed in this setting, where physical context is predominantly ignored in favour of reverse-engineering solutions.