Tamjid Azad


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Predicting The Scholarly Impact of Research Papers Using Retrieval-Augmented LLMs
Tamjid Azad | Ibrahim Al Azher | Sagnik Ray Choudhury | Hamed Alhoori
Proceedings of the Fifth Workshop on Scholarly Document Processing (SDP 2025)

Assessing a research paper’s scholarly impact is an important phase in the scientific research process; however, metrics typically take some time after publication to accurately capture the impact. Our study examines how Large Language Models (LLMs) can predict scholarly impact accurately. We utilize Retrieval-Augmented Generation (RAG) to examine the degree to which the LLM performance improves compared to zero-shot prompting. Results show that LLama3-8b with RAG achieved the best overall performance, while Gemma-7b benefited the most from RAG, exhibiting the most significant reduction in Mean Absolute Error (MAE). Our findings suggest that retrieval-augmented LLMs offer a promising approach for early research evaluation. Our code and dataset for this project are publicly available.