Tamara Martín Wanton


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
MUSST: A Multilingual Syntactic Simplification Tool
Carolina Scarton | Alessio Palmero Aprosio | Sara Tonelli | Tamara Martín Wanton | Lucia Specia
Proceedings of the IJCNLP 2017, System Demonstrations

We describe MUSST, a multilingual syntactic simplification tool. The tool supports sentence simplifications for English, Italian and Spanish, and can be easily extended to other languages. Our implementation includes a set of general-purpose simplification rules, as well as a sentence selection module (to select sentences to be simplified) and a confidence model (to select only promising simplifications). The tool was implemented in the context of the European project SIMPATICO on text simplification for Public Administration (PA) texts. Our evaluation on sentences in the PA domain shows that we obtain correct simplifications for 76% of the simplified cases in English, 71% of the cases in Spanish. For Italian, the results are lower (38%) but the tool is still under development.