This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
TakuyaNakamura
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Expressions with an aspectual variant of a light verb, e.g. ‘take on debt’ vs. ‘have debt’, are frequent in texts but often difficult to classify between verbal idioms, light verb constructions or compositional phrases. We investigate the properties of such expressions with a disputed membership and propose a selection of features that determine more satisfactory boundaries between the three categories in this zone, assigning the expressions to one of them.
Nous présentons une expérience de fusion d’annotations d’entités nommées provenant de différents annotateurs. Ce travail a été réalisé dans le cadre du projet Infom@gic, projet visant à l’intégration et à la validation d’applications opérationnelles autour de l’ingénierie des connaissances et de l’analyse de l’information, et soutenu par le pôle de compétitivité Cap Digital « Image, MultiMédia et Vie Numérique ». Nous décrivons tout d’abord les quatre annotateurs d’entités nommées à l’origine de cette expérience. Chacun d’entre eux fournit des annotations d’entités conformes à une norme développée dans le cadre du projet Infom@gic. L’algorithme de fusion des annotations est ensuite présenté ; il permet de gérer la compatibilité entre annotations et de mettre en évidence les conflits, et ainsi de fournir des informations plus fiables. Nous concluons en présentant et interprétant les résultats de la fusion, obtenus sur un corpus de référence annoté manuellement.
Les ressources lexicales sont essentielles pour obtenir des systèmes de traitement des langues performants. Ces ressources peuvent être soit construites à la main, soit acquises automatiquement à partir de gros corpus. Dans cet article, nous montrons la complémentarité de ces deux approches. Pour ce faire, nous utilisons l’exemple de la sous-catégorisation verbale en comparant un lexique acquis par des méthodes automatiques (LexSchem) avec un lexique construit manuellement (Le Lexique-Grammaire). Nous montrons que les informations acquises par ces deux méthodes sont bien distinctes et qu’elles peuvent s’enrichir mutuellement.