Takanori Kusumoto


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2012

pdf bib
Statistical Machine Translation without Source-side Parallel Corpus Using Word Lattice and Phrase Extension
Takanori Kusumoto | Tomoyosi Akiba
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Statistical machine translation (SMT) requires a parallel corpus between the source and target languages. Although a pivot-translation approach can be applied to a language pair that does not have a parallel corpus directly between them, it requires both source―pivot and pivot―target parallel corpora. We propose a novel approach to apply SMT to a resource-limited source language that has no parallel corpus but has only a word dictionary for the pivot language. The problems with dictionary-based translations lie in their ambiguity and incompleteness. The proposed method uses a word lattice representation of the pivot-language candidates and word lattice decoding to deal with the ambiguity; the lattice expansion is accomplished by using a pivot―target phrase translation table to compensate for the incompleteness. Our experimental evaluation showed that this approach is promising for applying SMT, even when a source-side parallel corpus is lacking.