This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
TakafumiSuzuki
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The Japanese language has various types of functional expressions. In order to organize Japanese functional expressions with various surface forms, a lexicon of Japanese functional expressions with hierarchical organization was compiled. This paper proposes how to design the framework of identifying more than 16,000 functional expressions in Japanese texts by utilizing hierarchical organization of the lexicon. In our framework, more than 16,000 functional expressions are roughly divided into canonical / derived functional expressions. Each derived functional expression is intended to be identified by referring to the most similar occurrence of its canonical expression. In our framework, contextual occurrence information of much fewer canonical expressions are expanded into the whole forms of derived expressions, to be utilized when identifying those derived expressions. We also empirically show that the proposed method can correctly identify more than 80% of the functional / content usages only with less than 38,000 training instances of manually identified canonical expressions.
In the ``Sandglass'' MT architecture, we identify the class of monosemous Japanese functional expressions and utilize it in the task of translating Japanese functional expressions into English. We employ the semantic equivalence classes of a recently compiled large scale hierarchical lexicon of Japanese functional expressions. We then study whether functional expressions within a class can be translated into a single canonical English expression. Based on the results of identifying monosemous semantic equivalence classes, this paper studies how to extract rules for translating functional expressions in Japanese patent documents into English. In this study, we use about 1.8M Japanese-English parallel sentences automatically extracted from Japanese-English patent families, which are distributed through the Patent Translation Task at the NTCIR-7 Workshop. Then, as a toolkit of a phrase-based SMT (Statistical Machine Translation) model, Moses is applied and Japanese-English translation pairs are obtained in the form of a phrase translation table. Finally, we extract translation pairs of Japanese functional expressions from the phrase translation table. Through this study, we found that most of the semantic equivalence classes judged as monosemous based on manual translation into English have only one translation rules even in the patent domain.