Taichi Kato


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
BERT-Based Simplification of Japanese Sentence-Ending Predicates in Descriptive Text
Taichi Kato | Rei Miyata | Satoshi Sato
Proceedings of the 13th International Conference on Natural Language Generation

Japanese sentence-ending predicates intricately combine content words and functional elements, such as aspect, modality, and honorifics; this can often hinder the understanding of language learners and children. Conventional lexical simplification methods, which replace difficult target words with simpler synonyms acquired from lexical resources in a word-by-word manner, are not always suitable for the simplification of such Japanese predicates. Given this situation, we propose a BERT-based simplification method, the core feature of which is the high ability to substitute the whole predicates with simple ones while maintaining their core meanings in the context by utilizing pre-trained masked language models. Experimental results showed that our proposed methods consistently outperformed the conventional thesaurus-based method by a wide margin. Furthermore, we investigated in detail the effectiveness of the average token embedding and dropout, and the remaining errors of our BERT-based methods.