Sweta Pati


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Instruction-Tuning LLMs for Event Extraction with Annotation Guidelines
Saurabh Srivastava | Sweta Pati | Ziyu Yao
Findings of the Association for Computational Linguistics: ACL 2025

In this work, we study the effect of annotation guidelines–textual descriptions of event types and arguments, when instruction-tuning large language models for event extraction. We conducted a series of experiments with both human-provided and machine-generated guidelines in both full- and low-data settings. Our results demonstrate the promise of annotation guidelines when there is a decent amount of training data and highlight its effectiveness in improving cross-schema generalization and low-frequency event-type performance.