Swaroop Gadiyaram


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Optimizing LLM Based Retrieval Augmented Generation Pipelines in the Financial Domain
Yiyun Zhao | Prateek Singh | Hanoz Bhathena | Bernardo Ramos | Aviral Joshi | Swaroop Gadiyaram | Saket Sharma
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Retrieval Augmented Generation (RAG) is a prominent approach in real-word applications for grounding large language model (LLM) generations in up to date and domain-specific knowledge. However, there is a lack of systematic investigations of the impact of each component (retrieval quality, prompts, generation models) on the generation quality of a RAG pipeline in real world scenarios. In this study, we benchmark 6 LLMs in 15 retrieval scenarios exploring 9 prompts over 2 real world financial domain datasets. We thoroughly discuss the impact of each component in RAG pipeline on answer generation quality and formulate specific recommendations for the design of RAG systems.