Susmita Mazumdar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Adversities are all you need: Classification of self-reported breast cancer posts on Twitter using Adversarial Fine-tuning
Adarsh Kumar | Ojasv Kamal | Susmita Mazumdar
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

In this paper, we describe our system entry for Shared Task 8 at SMM4H-2021, which is on automatic classification of self-reported breast cancer posts on Twitter. In our system, we use a transformer-based language model fine-tuning approach to automatically identify tweets in the self-reports category. Furthermore, we involve a Gradient-based Adversarial fine-tuning to improve the overall model’s robustness. Our system achieved an F1-score of 0.8625 on the Development set and 0.8501 on the Test set in Shared Task-8 of SMM4H-2021.