Sushrita Yerra


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Do Large Language Models Know When Not to Answer in Medical QA?
Sravanthi Machcha | Sushrita Yerra | Sharmin Sultana | Hong Yu | Zonghai Yao
Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025)

Uncertainty awareness is essential for large language models (LLMs), particularly in safety-critical domains such as medicine where erroneous or hallucinatory outputs can cause harm. Yet most evaluations remain centered on accuracy, offering limited insight into model confidence and its relation to abstention. In this work, we present preliminary experiments that combine conformal prediction with abstention-augmented and perturbed variants of medical QA datasets. Our early results suggest a positive link between uncertainty estimates and abstention decisions, with this effect amplified under higher difficulty and adversarial perturbations. These findings highlight abstention as a practical handle for probing model reliability in medical QA.