Sundaresan Raman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
BITS Pilani at SemEval-2024 Task 1: Using text-embedding-3-large and LaBSE embeddings for Semantic Textual Relatedness
Dilip Venkatesh | Sundaresan Raman
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Semantic Relatedness of a pair of text (sentences or words) is the degree to which theirmeanings are close. The Track A of the Semantic Textual Relatedness shared task aimsto find the semantic relatedness for the English language along with multiple other lowresource languages with the use of pretrainedlanguage models. We proposes a system tofind the Spearman coefficient of a textual pairusing pretrained embedding models like textembedding-3-large and LaBSE.