This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SunYong
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Cross-domain few-shot Relation Extraction (RE) aims to transfer knowledge from a source domain to a different target domain to address low-resource problems.Previous work utilized label descriptions and entity information to leverage the knowledge of the source domain.However, these models are prone to confusion when directly applying this knowledge to a target domain with entirely new types of relations, which becomes particularly pronounced when facing similar relations.In this work, we propose a relation-aware prompt learning method with pre-training.Specifically, we empower the model to clear confusion by decomposing various relation types through an innovative label prompt, while a context prompt is employed to capture differences in different scenarios, enabling the model to further discern confusion. Two pre-training tasks are designed to leverage the prompt knowledge and paradigm.Experiments show that our method outperforms previous sota methods, yielding significantly better results on cross-domain few-shot RE tasks.
Predicting unseen relations that cannot be observed during the training phase is a challenging task in relation extraction. Previous works have made progress by matching the semantics between input instances and label descriptions. However, fine-grained matching often requires laborious manual annotation, and rich interactions between instances and label descriptions come with significant computational overhead. In this work, we propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost, and fuses coarse-grained recall and fine-grained classification for rich interactions with guaranteed inference speed.Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods, and achieves a balance between inference efficiency and prediction accuracy in zero-shot relation extraction tasks.Our code is available at https://github.com/longls777/EMMA.