Sujal Maharjan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HOPE at TSAR 2025 Shared Task Balancing Control and Complexity in Readability-Controlled Text Simplification
Sujal Maharjan | Astha Shrestha
Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)

This paper describes our submissions to the TSAR 2025 Shared Task on Readability-Controlled Text Simplification. We present a comparative study of three architectures a rule-based baseline, a heuristic-driven expert system, and a zero-shot generative T5 pipeline with a semantic guardrail. Our analysis shows a trade-off between the controllability of rule-based systems and the fluency of generative models. In this zero-shot setting, simpler, confined systems achieved superior meaning preservation scores compared to the more powerful but less predictable generative model. We present a diagnostic failure analysis on system outputs, illustrating how different architectures result in distinct error patterns such as under-simplification, information loss via heuristics, and semantic drift.

pdf bib
RankedCOMET: Elevating a 2022 Baseline to a Top-5 Finish in the WMT 2025 QE Task
Sujal Maharjan | Astha Shrestha
Proceedings of the Tenth Conference on Machine Translation

This paper presents rankedCOMET, a lightweight per-language-pair calibration applied to the publicly available Unbabel/wmt22-comet-da model that yields a competitive Quality Estimation (QE) system for the WMT 2025 shared task. This approach transforms raw model outputs into per-language average ranks and min–max normalizes those ranks to [0,1], maintaining intra-language ordering while generating consistent numeric ranges across language pairs. Applied to 742,740 test segments and submitted to Codabench, this unsupervised post-processing enhanced the aggregated Pearson correlation on the preliminary snapshot and led to a 5th-place finish. We provide detailed pseudocode, ablations (including a negative ensemble attempt), and a reproducible analysis pipeline providing Pearson, Spearman, and Kendall correlations with bootstrap confidence intervals.