Steven L. Johnson


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Decoding the Rule Book: Extracting Hidden Moderation Criteria from Reddit Communities
Youngwoo Kim | Himanshu Beniwal | Steven L. Johnson | Thomas Hartvigsen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Effective content moderation systems require explicit classification criteria, yet online communities like subreddits often operate with diverse, implicit standards. This work introduces a novel approach to identify and extract these implicit criteria from historical moderation data using an interpretable architecture. We represent moderation criteria as score tables of lexical expressions associated with content removal, enabling systematic comparison across different communities.Our experiments demonstrate that these extracted lexical patterns effectively replicate the performance of neural moderation models while providing transparent insights into decision-making processes. The resulting criteria matrix reveals significant variations in how seemingly shared norms are actually enforced, uncovering previously undocumented moderation patterns including community-specific tolerances for language, features for topical restrictions, and underlying subcategories of the toxic speech classification.