Steven Go


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Toward Automated Evaluation of AI-Generated Item Drafts in Clinical Assessment
Tazin Afrin | Le An Ha | Victoria Yaneva | Keelan Evanini | Steven Go | Kristine DeRuchie | Michael Heilig
Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers

This study examines the classification of AI-generated clinical multiple-choice questions drafts as “helpful” or “non-helpful” starting points. Expert judgments were analyzed, and multiple classifiers were evaluated—including feature-based models, fine-tuned transformers, and few-shot prompting with GPT-4. Our findings highlight the challenges and considerations for evaluation methods of AI-generated items in clinical test development.