Stephen Purpura


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2008

pdf bib
The U.S. Policy Agenda Legislation Corpus Volume 1 - a Language Resource from 1947 - 1998
Stephen Purpura | John Wilkerson | Dustin Hillard
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

We introduce the corpus of United States Congressional bills from 1947 to 1998 for use by language research communities. The U.S. Policy Agenda Legislation Corpus Volume 1 (USPALCV1) includes more than 375,000 legislative bills annotated with a hierarchical policy area category. The human annotations in USPALCV1 have been reliably applied over time to enable social science analysis of legislative trends. The corpus is a member of an emerging family of corpora that are annotated by policy area to enable comparative parallel trend recognition across countries and domains (legislation, political speeches, newswire articles, budgetary expenditures, web sites, etc.). This paper describes the origins of the corpus, its creation, ways to access it, design criteria, and an analysis with common supervised machine learning methods. The use of machine learning methods establishes a baseline proposed modeling for the topic classification of legal documents.