Stephan Meylan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Contextualized Word Embeddings Encode Aspects of Human-Like Word Sense Knowledge
Sathvik Nair | Mahesh Srinivasan | Stephan Meylan
Proceedings of the Workshop on the Cognitive Aspects of the Lexicon

Understanding context-dependent variation in word meanings is a key aspect of human language comprehension supported by the lexicon. Lexicographic resources (e.g., WordNet) capture only some of this context-dependent variation; for example, they often do not encode how closely senses, or discretized word meanings, are related to one another. Our work investigates whether recent advances in NLP, specifically contextualized word embeddings, capture human-like distinctions between English word senses, such as polysemy and homonymy. We collect data from a behavioral, web-based experiment, in which participants provide judgments of the relatedness of multiple WordNet senses of a word in a two-dimensional spatial arrangement task. We find that participants’ judgments of the relatedness between senses are correlated with distances between senses in the BERT embedding space. Specifically, homonymous senses (e.g., bat as mammal vs. bat as sports equipment) are reliably more distant from one another in the embedding space than polysemous ones (e.g., chicken as animal vs. chicken as meat). Our findings point towards the potential utility of continuous-space representations of sense meanings.