Stella Heras


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Automatic Debate Evaluation with Argumentation Semantics and Natural Language Argument Graph Networks
Ramon Ruiz-Dolz | Stella Heras | Ana Garcia
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The lack of annotated data on professional argumentation and complete argumentative debates has led to the oversimplification and the inability of approaching more complex natural language processing tasks. Such is the case of the automatic evaluation of complete professional argumentative debates. In this paper, we propose an original hybrid method to automatically predict the winning stance in this kind of debates. For that purpose, we combine concepts from argumentation theory such as argumentation frameworks and semantics, with Transformer-based architectures and neural graph networks. Furthermore, we obtain promising results that lay the basis on an unexplored new instance of the automatic analysis of natural language arguments.