Sriharshitha Mareddy


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Survey on Computational Approaches to Implicature
Kaveri Anuranjana | Srihitha Mallepally | Sriharshitha Mareddy | Amit Shukla | Radhika Mamidi
Proceedings of the 21st International Conference on Natural Language Processing (ICON)

This paper explores the concept of solving implicature in Natural Language Processing (NLP), highlighting its significance in understanding indirect communication. Drawing on foundational theories by Austin, Searle, and Grice, we discuss how implicature extends beyond literal language to convey nuanced meanings. We review existing datasets, including the Pragmatic Understanding Benchmark (PUB), that assess models’ capabilities in recognizing and interpreting implicatures. Despite recent advances in large language models (LLMs), challenges remain in effectively processing implicature due to limitations in training data and the complexities of contextual interpretation. We propose future directions for research, including the enhancement of datasets and the integration of pragmatic reasoning tasks, to improve LLMs’ understanding of implicature and facilitate better human-computer interaction.