This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SowmyaV
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
This paper presents the findings of the shared task on multimodal sentiment analysis, abusive language detection and hate speech detection in Dravidian languages. Through this shared task, researchers worldwide can submit models for three crucial social media data analysis challenges in Dravidian languages: sentiment analysis, abusive language detection, and hate speech detection. The aim is to build models for deriving fine-grained sentiment analysis from multimodal data in Tamil and Malayalam, identifying abusive and hate content from multimodal data in Tamil. Three modalities make up the multimodal data: text, audio, and video. YouTube videos were gathered to create the datasets for the tasks. Thirty-nine teams took part in the competition. However, only two teams, though, turned in their findings. The macro F1-score was used to assess the submissions
This paper summarizes the shared task on multimodal abusive language detection and sentiment analysis in Dravidian languages as part of the third Workshop on Speech and Language Technologies for Dravidian Languages at RANLP 2023. This shared task provides a platform for researchers worldwide to submit their models on two crucial social media data analysis problems in Dravidian languages - abusive language detection and sentiment analysis. Abusive language detection identifies social media content with abusive information, whereas sentiment analysis refers to the problem of determining the sentiments expressed in a text. This task aims to build models for detecting abusive content and analyzing fine-grained sentiment from multimodal data in Tamil and Malayalam. The multimodal data consists of three modalities - video, audio and text. The datasets for both tasks were prepared by collecting videos from YouTube. Sixty teams participated in both tasks. However, only two teams submitted their results. The submissions were evaluated using macro F1-score.