Sourajit Saha


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Side Effects of Erasing Concepts from Diffusion Models
Shaswati Saha | Sourajit Saha | Manas Gaur | Tejas Gokhale
Findings of the Association for Computational Linguistics: EMNLP 2025

Concerns about text-to-image (T2I) generative models infringing on privacy, copyright, and safety have led to the development of concept erasure techniques (CETs). The goal of an effective CET is to prohibit the generation of undesired “target” concepts specified by the user, while preserving the ability to synthesize high-quality images of other concepts. In this work, we demonstrate that concept erasure has side effects and CETs can be easily circumvented. For a comprehensive measurement of the robustness of CETs, we present the Side Effect Evaluation (SEE) benchmark that consists of hierarchical and compositional prompts describing objects and their attributes. The dataset and an automated evaluation pipeline quantify side effects of CETs across three aspects: impact on neighboring concepts, evasion of targets, and attribute leakage. Our experiments reveal that CETs can be circumvented by using superclass-subclass hierarchy, semantically similar prompts, and compositional variants of the target. We show that CETs suffer from attribute leakage and a counterintuitive phenomenon of attention concentration or dispersal. We release our benchmark and evaluation tools to aid future work on robust concept erasure.