Sourabh Majumdar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Generating Challenge Datasets for Task-Oriented Conversational Agents through Self-Play
Sourabh Majumdar | Serra Sinem Tekiroglu | Marco Guerini
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

End-to-end neural approaches are becoming increasingly common in conversational scenarios due to their promising performances when provided with sufficient amount of data. In this paper, we present a novel methodology to address the interpretability of neural approaches in such scenarios by creating challenge datasets using dialogue self-play over multiple tasks/intents. Dialogue self-play allows generating large amount of synthetic data; by taking advantage of the complete control over the generation process, we show how neural approaches can be evaluated in terms of unseen dialogue patterns. We propose several out-of-pattern test cases each of which introduces a natural and unexpected user utterance phenomenon. As a proof of concept, we built a single and a multiple memory network, and show that these two architectures have diverse performances depending on the peculiar dialogue patterns.