This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SoroushJavdan
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Due to the increased availability of online reviews, sentiment analysis witnessed a thriving interest from researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e., aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Farsi is a language with more than 110 million speakers, to the best of our knowledge, there is a lack of proper public datasets on aspect-based sentiment analysis for Farsi. This paper provides a manually annotated Farsi dataset, Pars-ABSA, annotated and verified by three native Farsi speakers. The dataset consists of 5,114 positive, 3,061 negative and 1,827 neutral data samples from 5,602 unique reviews. Moreover, as a baseline, this paper reports the performance of some aspect-based sentiment analysis methods focusing on transfer learning on Pars-ABSA.
Sarcasm is a type of figurative language broadly adopted in social media and daily conversations. The sarcasm can ultimately alter the meaning of the sentence, which makes the opinion analysis process error-prone. In this paper, we propose to employ bidirectional encoder representations transformers (BERT), and aspect-based sentiment analysis approaches in order to extract the relation between context dialogue sequence and response and determine whether or not the response is sarcastic. The best performing method of ours obtains an F1 score of 0.73 on the Twitter dataset and 0.734 over the Reddit dataset at the second workshop on figurative language processing Shared Task 2020.
Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.