Sohyung Kim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Using Confidential Data for Domain Adaptation of Neural Machine Translation
Sohyung Kim | Arianna Bisazza | Fatih Turkmen
Proceedings of the Third Workshop on Privacy in Natural Language Processing

We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sample to fine-tune a generic NMT model instead of the full sentences. Despite the loss of long segments for the sake of confidentiality protection, we find that NMT quality can considerably benefit from this adaptation, and that further gains can be obtained with a simple tagging technique.