Idioms, also referred to as phraseological units in some language terminologies, are a subset within the broader category of multi-word expressions. However, there is a lack of representation of idioms in Croatian, a low-resourced language, in the Linguistic Linked Open Data cloud (LLOD). To address this gap, we propose an extension of an existing RDF-based multilingual representation of idioms, referred to as the LIdioms dataset, which currently includes idioms from English, German, Italian, Portuguese, and Russian. This paper expands the existing resource by incorporating 1,042 Croatian idioms in an Ontolex Lemon format. In addition, to foster translation initiatives and facilitate intercultural exchange, these added Croatian idioms have also been linked to other idioms of the LIdioms dataset, with which they share similar meanings despite their differences in the expression aspect. This addition enriches the knowledge base of the LLOD community with a new language resource that includes Croatian idioms.
The choice of plausible alternatives (COPA) task requires selecting the most plausible outcome from two choices based on understanding the causal relationships presented in a given text.This paper outlines several approaches and model adaptation strategies to the VarDial 2024 DIALECT-COPA shared task, focusing on causal commonsense reasoning in South-Slavic dialects. We utilize and evaluate the GPT-4 model in combination with various prompts engineering and the Retrieval-Augmented Generation (RAG) technique. Initially, we test and compare the performance of GPT-4 with simple and advanced prompts on the COPA task across three dialects: Cerkno, Chakavian and Torlak. Next, we enhance prompts using the RAG technique specifically for the Chakavian and Cerkno dialect. This involves creating an extended Chakavian-English and Cerkno-Slovene lexical dictionary and integrating it into the prompts. Our findings indicate that the most complex approach, which combines an advanced prompt with an injected dictionary, yields the highest performance on the DIALECT-COPA task.