This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SizheLiu
Also published as:
斯哲 刘
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Models have demonstrated impressive reasoning capabilities across multiple languages. However, the relationship between capabilities in different languages is less explored. In this work, we decompose the process of reasoning tasks into two separated components: knowledge retrieval and knowledge-free reasoning, and analyze the relationship between cross-lingual transferability and these two components. With adapted commonsense reasoning datasets and constructed knowledge-free reasoning datasets, we show that the knowledge-free reasoning capability can be nearly perfectly transferred across various source-target language directions despite the secondary impact of resource in some specific target languages, while cross-lingual knowledge retrieval significantly hinders the transfer. Moreover, by analyzing the hidden states and feed-forward network neuron activation during the reasoning, we show that higher similarity of hidden representations and larger overlap of activated neurons could explain the better cross-lingual transferability of knowledge-free reasoning than knowledge retrieval. Thus, we hypothesize that knowledge-free reasoning shares similar neurons in different languages for reasoning, while knowledge is stored separately in different languages.
Augmenting the base neural model with a token-level symbolic datastore is a novel generation paradigm and has achieved promising results in machine translation (MT). In this paper, we introduce a unified framework kNN-BOX, which enables quick development and visualization for this novel paradigm. kNN-BOX decomposes the datastore-augmentation approach into three modules: datastore, retriever and combiner, thus putting diverse kNN generation methods into a unified way. Currently, kNN-BOX has provided implementation of seven popular kNN-MT variants, covering research from performance enhancement to efficiency optimization. It is easy for users to reproduce these existing work or customize their own models. Besides, users can interact with their kNN generation systems with kNN-BOX to better understand the underlying inference process in a visualized way. In experiment section, we apply kNN-BOX for machine translation and three other seq2seq generation tasks (text simplification, paraphrase generation and question generation). Experiment results show that augmenting the base neural model with kNN-BOX can bring large performance improvement in all these tasks. The code and document of kNN-BOX is available at https://github.com/NJUNLP/knn-box. The demo can be accessed at http://nlp.nju.edu.cn/demo/knn-box/. The introduction video is available at https://www.youtube.com/watch?v=m0eJldHVR3w.
Decoding by contrasting layers (DoLa), is designed to improve the generation quality of large language models (LLMs) by contrasting the prediction probabilities between an early exit output (amateur logits) and the final output (expert logits).However, we find that this approach does not work well on non-English tasks.Inspired by previous interpretability work on language transition during the model’s forward pass, we discover that this issue arises from a language mismatch between early exit output and final output.In this work, we propose an improved contrastive decoding algorithm that is effective for diverse languages beyond English.To obtain more helpful amateur logits, we devise two strategies to skip a set of bottom, language-agnostic layers based on our preliminary analysis.Experimental results on multilingual reasoning benchmarks demonstrate that our proposed method outperforms previous contrastive decoding baselines and substantially improves LLM’s chain-of-thought reasoning accuracy across 11 languages.