Siyu Duan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Restoring Ancient Ideograph: A Multimodal Multitask Neural Network Approach
Siyu Duan | Jun Wang | Qi Su
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Cultural heritage serves as the enduring record of human thought and history. Despite significant efforts dedicated to the preservation of cultural relics, many ancient artefacts have been ravaged irreversibly by natural deterioration and human actions. Deep learning technology has emerged as a valuable tool for restoring various kinds of cultural heritages, including ancient text restoration. Previous research has approached ancient text restoration from either visual or textual perspectives, often overlooking the potential of synergizing multimodal information. This paper proposes a novel Multimodal Multitask Restoring Model (MMRM) to restore ancient texts, particularly emphasising the ideograph. This model combines context understanding with residual visual information from damaged ancient artefacts, enabling it to predict damaged characters and generate restored images simultaneously. We tested the MMRM model through experiments conducted on both simulated datasets and authentic ancient inscriptions. The results show that the proposed method gives insightful restoration suggestions in both simulation experiments and real-world scenarios. To the best of our knowledge, this work represents the pioneering application of multimodal deep learning in ancient text restoration, which will contribute to the understanding of ancient society and culture in digital humanities fields.