This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SiyaQi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This study evaluates Large Language Models’ (LLMs) ability to simulate non-native-like English use observed in human second language (L2) learners interfered with by their native first language (L1). In dialogue-based interviews, we prompt LLMs to mimic L2 English learners with specific L1s (e.g., Japanese, Thai, Urdu) across seven languages, comparing their outputs to real L2 learner data. Our analysis examines L1-driven linguistic biases, such as reference word usage and avoidance behaviors, using information-theoretic and distributional density measures. Results show that modern LLMs (e.g., Qwen2.5, LLAMA3, DeepseekV3, GPT 4o) replicate L1-dependent patterns observed in human L2 data, with distinct influences from various languages (e.g., Japanese, Korean, and Mandarin significantly affect tense agreement, and Urdu influences noun-verb collocations). Our results reveal LLMs’ potential for L2 dialogue generation and evaluation for future educational applications.
Recent advances, such as DeepSeek R1-Zero, highlight the effectiveness of incentive training, a reinforcement learning paradigm that computes rewards solely based on the final answer part of a language model’s output, thereby encouraging the generation of intermediate reasoning steps. However, these methods fundamentally rely on external verifiers, which limits their applicability to domains like mathematics and coding, where such verifiers are readily available. Although reward models can serve as verifiers, they require high-quality annotated data and are costly to train.In this work, we propose NOVER, NO-VERifier Reinforcement Learning, a general reinforcement learning framework that requires only standard supervised fine-tuning data with no need for an external verifier. NOVER enables incentive training across a wide range of text-to-text tasks and outperforms the model of the same size distilled from large reasoning models such as DeepSeek R1 671B by 7.7%. Moreover, the flexibility of NOVER enables new possibilities for optimizing large language models, such as inverse incentive training.
Theory-of-Mind (ToM), the ability to infer others’ perceptions and mental states, is fundamental to human interaction but remains challenging for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on off-the-shelf LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured knowledge of entity states to build spatial scene graphs for belief tracking across various ToM orders and enrich events with fine-grained entity state details. Experimental results on ToMi, HiToM, and FANToM benchmarks show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
With the rapid development of large language models (LLMs), LLM-as-a-judge has emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation. While previous studies have focused exclusively on single-context evaluation (e.g., discourse faithfulness or world factuality), real-world hallucinations typically involve mixed contexts, which remains inadequately evaluated. In this study, we use summarization as a representative task to comprehensively evaluate LLMs’ capability in detecting mixed-context hallucinations, specifically distinguishing between factual and non-factual hallucinations. Through extensive experiments across direct generation and retrieval-based models of varying scales, our main observations are: (1) LLMs’ intrinsic knowledge introduces inherent biases in hallucination evaluation; (2) These biases particularly impact the detection of factual hallucinations, yielding a significant performance bottleneck; and (3) the fundamental challenge lies in effective knowledge utilization, balancing between LLMs’ intrinsic knowledge and external context for accurate mixed-context hallucination evaluation.
Scientific paper summarization is always challenging in Natural Language Processing (NLP) since it is hard to collect summaries from such long and complicated text. We observe that previous works tend to extract summaries from the head of the paper, resulting in information incompleteness. In this work, we present SAPGraph to utilize paper structure for solving this problem. SAPGraph is a scientific paper extractive summarization framework based on a structure-aware heterogeneous graph, which models the document into a graph with three kinds of nodes and edges based on structure information of facets and knowledge. Additionally, we provide a large-scale dataset of COVID-19-related papers, CORD-SUM. Experiments on CORD-SUM and ArXiv datasets show that SAPGraph generates more comprehensive and valuable summaries compared to previous works.
Our system participates in two shared tasks, CL-SciSumm 2020 and LongSumm 2020. In the CL-SciSumm shared task, based on our previous work, we apply more machine learning methods on position features and content features for facet classification in Task1B. And GCN is introduced in Task2 to perform extractive summarization. In the LongSumm shared task, we integrate both the extractive and abstractive summarization ways. Three methods were tested which are T5 Fine-tuning, DPPs Sampling, and GRU-GCN/GAT.