Siti Umairah Md Salleh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Joint Dialogue Topic Segmentation and Categorization: A Case Study on Clinical Spoken Conversations
Zhengyuan Liu | Siti Umairah Md Salleh | Hong Choon Oh | Pavitra Krishnaswamy | Nancy Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Utilizing natural language processing techniques in clinical conversations is effective to improve the efficiency of health management workflows for medical staff and patients. Dialogue segmentation and topic categorization are two fundamental steps for processing verbose spoken conversations and highlighting informative spans for downstream tasks. However, in practical use cases, due to the variety of segmentation granularity and topic definition, and the lack of diverse annotated corpora, no generic models are readily applicable for domain-specific applications. In this work, we introduce and adopt a joint model for dialogue segmentation and topic categorization, and conduct a case study on healthcare follow-up calls for diabetes management; we provide insights from both data and model perspectives toward performance and robustness.