Sirong Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ProTOD: Proactive Task-oriented Dialogue System Based on Large Language Model
Wenjie Dong | Sirong Chen | Yan Yang
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Model (LLM)-based Task-Oriented Dialogue (TOD) systems show promising performance in helping users achieve specific goals in a zero-shot setting. However, existing systems engage with users in a reactive manner, relying on a basic single-query mechanism with the knowledge base and employing passive policy planning. The proactive TOD systems, which can provide potentially helpful information and plan cross-domain multi-task dialogue policies, have not been well studied. In addition, effective evaluation methods are also lacking. To address these issues, we propose ProTOD, a novel LLM-based proactive TOD framework designed to improve system proactivity and goal completion. First, we design an adaptive exploratory retrieval mechanism to dynamically navigate domain knowledge. Second, we introduce a two-stage passive-to-proactive policy planner that effectively organizes knowledge and actions relationship. Finally, we develop two distinct user simulators with different personalities to simulate real-world interactions and propose a new error measure called Human-targeted Policy Edit Rate (HPER) for evaluation. Experimental results show that ProTOD achieves state-of-the-art (SOTA) performance, improving goal completion rates by 10% while significantly enhancing the proactive engagement.