Sirigireddy Dhana Laxmi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
DSC-IIT ISM at WNUT-2020 Task 2: Detection of COVID-19 informative tweets using RoBERTa
Sirigireddy Dhana Laxmi | Rohit Agarwal | Aman Sinha
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Social media such as Twitter is a hotspot of user-generated information. In this ongoing Covid-19 pandemic, there has been an abundance of data on social media which can be classified as informative and uninformative content. In this paper, we present our work to detect informative Covid-19 English tweets using RoBERTa model as a part of the W-NUT workshop 2020. We show the efficacy of our model on a public dataset with an F1-score of 0.89 on the validation dataset and 0.87 on the leaderboard.