This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
SindhujaGopalan
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Zero-shot slot filling is a well-established subtask of Natural Language Understanding (NLU). However, most existing methods primarily focus on single-turn text data, overlooking the unique complexities of conversational dialogue. Conversational data is highly dynamic, often involving abrupt topic shifts, interruptions, and implicit references that make it difficult to directly apply zero-shot slot filling techniques, even with the remarkable capabilities of large language models (LLMs). This paper addresses these challenges by proposing strategies for automatic data annotation with slot induction and black-box knowledge distillation (KD) from a teacher LLM to a smaller model, outperforming vanilla LLMs on internal datasets by 26% absolute increase in F1 score. Additionally, we introduce an efficient system architecture for call center product settings that surpasses off-the-shelf extractive models by 34% relative F1 score, enabling near real-time inference on dialogue streams with higher accuracy, while preserving low latency.
ITN involves rewriting the verbalised form of text from spoken transcripts to its corresponding written form. The task inherently expects challenges in identifying ITN entries due to spelling variations in words arising out of dialects, transcription errors etc. Additionally, in Tamil, word boundaries between adjacent words in a sentence often get obscured due to Punarchi, i.e. phonetic transformation of these boundaries. Being morphologically rich, the words in Tamil show a high degree of agglutination due to inflection and clitics. The combination of such factors leads to a high degree of surface-form variations, making scalability with pure rule-based approaches difficult. Instead, we experiment with fine-tuning three pre-trained neural LMs, consisting of a seq2seq model (s2s), a non-autoregressive text editor (NAR) and a sequence tagger + rules combination (tagger). While the tagger approach works best in a fully-supervised setting, s2s performs the best (98.05 F-Score) when augmented with additional data, via bootstrapping and data augmentation (DA&B). S2S reports a cumulative percentage improvement of 20.1 %, and statistically significant gains for all our models with DA&B. Compared to a fully supervised setup, bootstrapping alone reports a percentage improvement as high as 14.12 %, even with a small seed set of 324 ITN entries.
This paper describes a Natural language processing system developed for automatic identification of explicit connectives, its sense and arguments. Prior work has shown that the difference in usage of connectives across corpora affects the cross domain connective identification task negatively. Hence the development of domain specific discourse parser has become indispensable. Here, we present a corpus annotated with discourse relations on Medline abstracts. Kappa score is calculated to check the annotation quality of our corpus. The previous works on discourse analysis in bio-medical data have concentrated only on the identification of connectives and hence we have developed an end-end parser for connective and argument identification using Conditional Random Fields algorithm. The type and sub-type of the connective sense is also identified. The results obtained are encouraging.