Sina Daubener


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Detecting Compositionally Out-of-Distribution Examples in Semantic Parsing
Denis Lukovnikov | Sina Daubener | Asja Fischer
Findings of the Association for Computational Linguistics: EMNLP 2021

While neural networks are ubiquitous in state-of-the-art semantic parsers, it has been shown that most standard models suffer from dramatic performance losses when faced with compositionally out-of-distribution (OOD) data. Recently several methods have been proposed to improve compositional generalization in semantic parsing. In this work we instead focus on the problem of detecting compositionally OOD examples with neural semantic parsers, which, to the best of our knowledge, has not been investigated before. We investigate several strong yet simple methods for OOD detection based on predictive uncertainty. The experimental results demonstrate that these techniques perform well on the standard SCAN and CFQ datasets. Moreover, we show that OOD detection can be further improved by using a heterogeneous ensemble.