Simon Stein


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Using Discourse Connectives to Test Genre Bias in Masked Language Models
Heidrun Dorgeloh | Lea Kawaletz | Simon Stein | Regina Stodden | Stefan Conrad
Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)

This paper presents evidence for an effect of genre on the use of discourse connectives in argumentation. Drawing from discourse processing research on reasoning based structures, we use fill-mask computation to measure genre-induced expectations of argument realisation, and beta regression to model the probabilities of these realisations against a set of predictors. Contrasting fill-mask probabilities for the presence or absence of a discourse connective in baseline and finetuned language models reveals that genre introduces biases for the realisation of argument structure. These outcomes suggest that cross-domain discourse processing, but also argument mining, should take into account generalisations about specific features, such as connectives, and their probability related to the genre context.