Sichu Liang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RGAR: Recurrence Generation-augmented Retrieval for Factual-aware Medical Question Answering
Sichu Liang | Linhai Zhang | Hongyu Zhu | Wenwen Wang | Yulan He | Deyu Zhou
Findings of the Association for Computational Linguistics: EMNLP 2025

Medical question answering fundamentally relies on accurate clinical knowledge. The dominant paradigm, Retrieval-Augmented Generation (RAG), acquires expertise conceptual knowledge from large-scale medical corpus to guide general-purpose large language models (LLMs) in generating trustworthy answers. However, existing retrieval approaches often overlook the patient-specific factual knowledge embedded in Electronic Health Records (EHRs), which limits the contextual relevance of retrieved conceptual knowledge and hinders its effectiveness in vital clinical decision-making. This paper introduces RGAR, a recurrence generation-augmented retrieval framework that synergistically retrieves both factual and conceptual knowledge from dual sources (i.e., EHRs and the corpus), allowing mutual refinement through iterative interaction. Across three factual-aware medical QA benchmarks, RGAR establishes new state-of-the-art performance among medical RAG systems. Notably, RGAR enables the Llama-3.1-8B-Instruct model to surpass the considerably larger GPT-3.5 augmented with traditional RAG. Our findings demonstrate the benefit of explicitly mining patient-specific factual knowledge during retrieval, consistently improving generation quality and clinical relevance.