Sicheol Sung


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TrapDoc: Deceiving LLM Users by Injecting Imperceptible Phantom Tokens into Documents
Hyundong Jin | Sicheol Sung | Shinwoo Park | SeungYeop Baik | Yo-Sub Han
Findings of the Association for Computational Linguistics: EMNLP 2025

The reasoning, writing, text-editing, and retrieval capabilities of proprietary large language models (LLMs) have advanced rapidly, providing users with an ever-expanding set of functionalities. However, this growing utility has also led to a serious societal concern: the over-reliance on LLMs. In particular, users increasingly delegate tasks such as homework, assignments, or the processing of sensitive documents to LLMs without meaningful engagement. This form of over-reliance and misuse is emerging as a significant social issue. In order to mitigate these issues, we propose a method injecting imperceptible phantom tokens into documents, which causes LLMs to generate outputs that appear plausible to users but are in fact incorrect. Based on this technique, we introduce TrapDoc, a framework designed to deceive over-reliant LLM users. Through empirical evaluation, we demonstrate the effectiveness of our framework on proprietary LLMs, comparing its impact against several baselines. TrapDoc serves as a strong foundation for promoting more responsible and thoughtful engagement with language models.