Sicheng Shen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Team XSZ at BioLaySumm2025: Section-Wise Summarization, Retrieval-Augmented LLM, and Reinforcement Learning Fine-Tuning for Lay Summaries
Pengcheng Xu | Sicheng Shen | Jieli Zhou | Hongyi Xin
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

We propose a unified, multi-stage lay summarization pipeline for BioLaySumm 2025 (Subtask 1.1) that (1) selects and summarizes key article sections via BioBART, (2) retrieves K-shot demonstrations using BGE embeddings for in-context Llama 3 8B prompting, (3) applies LoRA adapters to Llama 3 8B for supervised fine-tuning, (4) merges section summaries with a second BioBART pass, and (5) refines outputs through reinforcement learning (PPO & GRPO) using a composite reward of factuality (AlignScore, SummaC), relevance (ROUGE-L, BERTScore), and readability (LENS, FKGL, DCRS, CLI). On PLOS and eLife validation sets, our complete systemreduces DCRS from 9.23 to 8.56 and reduces CLI from 12.98 to 12.65, ranking 3rd in readability. and outperforms llama3 finetune baseline in AlignScore 0.722 to 0.862, ranking 5th in factuality, demonstrating balanced gains across readability, relevance, and factuality.